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ABSTRACT

Viruses and viroids cause several diseases in tomato (Solanum lycopersicum) 
worldwide, generating important economic losses. About 312 viruses and seven 
viroids have been associated, of which more than 28 are present in Mexico. 
Therefore, the use of Plant Growth-Promoting Rhizobacteria (PGPR) can be 
an effective alternative for the management of viruses and viroids. The genera 
Pseudomonas, Bacillus, Azospirillum, Anabena and Stenotrophomonas have been 
implemented against main viruses reported in tomato: Cucumber mosaic virus 
(CMV), Tobacco mosaic virus (TMV), Tomato chlorotic spot virus (TCSV), Tomato 
mottle virus (ToMoV), Tomato spotted wilt virus (TSWV), Tomato yellow leaf curl 
virus (TYLCV), Potato virus Y (PVY), Groundnut bud necrosis virus (GBNV), 
with benefits in decreased incidence and severity up to 80 % and yield increase 
over 40 %. In Mexico, only Bacillus has been used. The use of PGPR is a strategy 
that could mitigate the impact of viral and viroid diseases and can be integrated into 
integrated management.

Keywords: ISR, Solanum lycopersicum, PGPR, Pseudomonas, Bacillus¸viruses.

The tomato (Solanum lycopersicum), native to South America and currently 
distributed worldwide, is adapted to tropical and temperate conditions (Hanssen 
and Lapidot, 2012). It is one of the most cultivated vegetables in both greenhouse 
and open-field settings (Sánchez-del Castillo et al., 2009). Additionally, it stands 
as one of the most lucrative and globally consumed crops. In 2021, the global har-
vest reached 256,770,677 tons (FAO, 2023). In Mexico, the cultivation of tomatoes 
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holds significant social and economic importance due to foreign exchange earnings 
and job generation (Hernández-Martínez et al., 2004). However, pathogens and 
insect pests can compromise its yield and quality (Savary et al., 2019). For in-
stance, diseases caused by viruses and viroids result in economic losses worldwide 
(Ling and Zhang, 2009; Antignus et al., 2002). In Mexico, there are only records 
of losses of up to 80% of viral infections comparing the use of agribon with the 
control (without management) (Ramírez-Rojas, 2006), so it is important to have ac-
curate information on the economic impact of these pathogens, since detections are 
constant (Figure 1) and are a latent risk for national production. A global economic 
impact exceeding $30 billion annually has been estimated for viral diseases affect-
ing economically significant crops (Sastry, 2013a).

Both viruses and viroids can lead to losses in crop production and quality. 
Therefore, it is crucial to explore management alternatives that ensure direct, 
effective, and ecologically safe control (Rojas et al., 2018). For decades, chemical 
pesticides have been employed globally in agriculture to control insect pests and 

Figure 1. States of the Mexican Republic where viruses and viroids were detected in tomato (See Table 1).
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phytopathogens, often applied excessively to both crops and soil, resulting in 
resistance issues (Karthika et al., 2020). Specifically, in the control of diseases 
caused by viruses and viroids, the use of agrochemicals has been limited to the 
control of vector insects. However, in recent years, management strategies have 
shifted towards seeking environmentally friendly alternatives compatible with the 
surrounding flora and fauna.

Therefore, a comprehensive understanding of these infectious agents and 
their interaction with hosts is essential to gain knowledge and propose effective 
management alternatives. While research has been conducted in recent years 
on the role of Plant Growth-Promoting Rhizobacteria (PGPR) in managing 
phytopathogenic fungi (Basit et al., 2021), little exploration has been done regarding 
their use in managing viruses and viroids. This exploration aims to reduce the impact 
of agrochemicals on vector control since, by nature, the best management involves 
implementing resistant varieties and preventive measures. As a result, the objective 
of this review is to explore the potential of PGPR for managing viruses and viroids 
causing diseases in tomatoes, along with examining the current research trends in 
this field within the country.

Viruses in tomato
Viruses are infectious agents (obligate parasites) composed of nucleic acid 

(RNA and DNA) enveloped in proteins, capable of replicating within living 
cells (Hancinský et al., 2020). They are exclusively dependent on the host cell’s 
machinery for replication (Sastry, 2013b). Viruses can exhibit various shapes such 
as rigid and flexible rods, rigid rods, bacilli, polyhedra, geminate, among others 
(ICTV, 2021).

In 2011, the ten most significant viruses of international importance were 
identified by the global plant virology community. These included Tobacco mosaic 
virus (TMV), Tomato spotted wilt virus (TSWV), Tomato yellow leaf curl virus 
(TYLCV), Cucumber mosaic virus (CMV), Potato virus Y (PVY), Cauliflower 
mosaic virus (CaMV), African cassava mosaic virus (ACMV), Plum pox virus 
(PPV), Brome mosaic virus (BMV), and Potato virus X (PVX). Notably, six of 
these viruses infect tomatoes (Scholthof et al., 2011). Worldwide, the key viruses 
causing losses in tomato cultivation comprise Tomato leaf curl virus (TYLCV), 
Tobacco mosaic virus, Beet curly top virus (BCTV), Tomato bushy stunt virus 
(TBSV), and Tomato spotted wilt virus (Sastry, 2013a). Since 2018, the emergence 
of Tomato brown rugose fruit virus (TBRFV) poses a latent threat due to the 
lack of tolerant varieties and its distribution in major production areas in Mexico 
(Cambrón-Crisantos et al., 2019).

The International Committee on Taxonomy of Viruses (ICTV) has classified 
viruses into 189 families, 2,224 genera, and 9,110 species (https://talk.ictvonline.
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org/taxonomy/) (ICTV, 2021). In tomatoes, approximately 312 viruses have been 
reported (Rivarez et al., 2021), with more than 28 of them documented in Mexico 
(Table 1). Among the viruses reported in Mexico, ToBRFV, TYLCV, TSWV, 
Pepino mosaic virus (PepMV), and Tomato wilt virus (ToMarV) are of greater 
significance in tomatoes due to their economic impact and prevalence in both field 
and greenhouse conditions (García-Estrada et al., 2022). 

Among the primary viruses affecting tomatoes, over 28 viruses belong to 
the Begomovirus genus (ssDNA) (Hogenhout et al., 2008), while the remaining 
viruses fall into 18 genera. Notably, Orthotospovirus, Potyvirus, Tobamovirus, and 

Table 1. Main viruses reported in tomato (Solanum lycopersicum) in Mexico and the world.

Family / Genus / Species Type 
genome Reference

Geminiviridae: Begomovirus
*Pepper golden mosaic virus (PepGMV), *Tomato chino La Paz virus 
(ToChLPV), *Tomato golden mottle virus (ToGMoV), Tomato leaf curl 
Bangladesh virus (ToLCBV),*Tomato mottle virus (ToMoV), *Tomato severe 
leaf curl virus (ToSLCV), *Tomato yellow leaf curl virus (TYLCV), Tobacco 
leaf curl virus (TLCV), Tomato bright yellow mottle virus (TBYMV), Tomato 
enation leaf curl virus (ToELCV), Tomato common mosaic virus (ToCmMV), 
Tomato curly stunt virus (ToCSV), Tomato chlorotic leaf distortion virus 
(ToClLDV), Tomato chlorotic mottle Guyane virus (ToCMoGV), Tomato dwarf 
leaf virus (ToDLV), Tomato golden mosaic virus (TGMV), Tomato golden vein 
virus (TGVV), Tomato interveinal chlorosis virus (ToICV), Tomato leaf curl 
New Delhi virus (ToLCNDV), Tomato leaf curl Palampur virus (ToLCPalV), 
Tomato leaf curl purple vein virus (ToLCPVV), Tomato mosaic Havana virus 
(ToMHaV), Tomato mottle leaf curl virus (TOMLCV), Tomato rugose yellow 
leaf curl virus (TRYLCV), Tomato yellow leaf curl Sardinia virus (TYLCSV), 
Tomato yellow mosaic virus (ToYMV), Tomato leaf curl virus Arusha virus 
(ToLCArV), Tomato leaf curl Ghana virus (ToLCGV), *Sinaloa tomato leaf 
curl virus (SToLCV)¸ *Tomato leaf curl Sinaloa virus (ToLCSinV)¸ Lisianthus 
enation leaf curl virus (LELCV), *Chino del tomate virus (CdTV), *Pepper 
huasteco yellow vein virus (PHYVV), *Squash leaf curl virus (SLCV), *Tomato 
ápex necrosis virus (ToANV)

Bipartita, 
monopartita 
circular / 
ssDNA

Green et al., 2007;
Holguin-Peña et 
al., 2004; Honguin-
Peña et al., 2007; 
Mauricio-Castillo 
et al., 2007; CABI, 
2020; Mauricio-
Castillo et al., 2007; 
Cardenas-Conejo et 
al., 2010; Avedi et al., 
2021; Idris y Brown, 
2007; Rojas et al., 
2005: Taniguchi et 
al., 2023; Idris et al., 
1999; Lugo et al., 
2011; Barajas-Ortiz 
et al., 2013; Zuñiga-
Romano et al., 2019

Potyviridae: Potyvirus
*Tobacco etch virus (TEV), Potato virus Y (PVY), Pepper veinal mottle virus 
(PVMV), Peru tomato mosaic virus (PTMV); *Tomato necrotic stunt virus 
(ToNSV)

Monopartita 
lineal / ssRNA +

CABI, 2020;
Fernandez-Northcote 
y Fulton, 1980; Li et 
al., 2012

Amalgaviridae: Amalgavirus
*Southern tomato virus (SToV)

Lineal / dsRNA Sabanadzovic et al., 
2009

Virgoviridae: Tobamovirus
*Tobacco mosaic virus (ToMV), *Tomato brown rugose fruit virus (ToBRFV), 
*Tomato mottle mosaic virus (ToMMV), *Tomato mosaic virus (ToMV)

Monopartita 
lineal ssRNA +

CABI, 2020; 
Cambrón-Crisantos 
et al., 2019; Zuñiga-
Romano et al., 2019
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Secoviridae: Nepovirus
*Tobacco ringspot virus (TRSV), Tomato black ring virus (TBRV)

Bipartita lineal / 
ssRNA +

CABI, 2020; Perez-
Moreno et al., 2004

Secoviridae: Torradovirus 
*Tomato torrado virus (ToTV); Tomato marchitez virus (ToMarV), *Tomato 
chocolate spot virus (ToChSV), Tomato chocolate virus (ToChV)

Bipartita lineal  
/ ssRNA +

CABI, 2020; Verbeek 
et al., 2008

Tombusviridae: Tombusvirus
*Tomato bushy stunt virus (TBSV)

Monopartita 
lineal / ssRNA +

CABI, 2020; De la 
Torre-Almaráz et al., 
2004

Closteroviridae: Crinivirus
*Tomato chlorosis virus (ToCV), *Tomato infectious chlorosis virus (TICV)

Bipartita lineal / 
ssRNA +

CABI, 2020; Méndez-
Lozano et al., 2012

Tospoviridae: Orthotospovirus
*Tomato spotted wilt virus (TSWV), Chrysanthemum stem necrosis virus 
(CSNV), Pepper necrotic spot virus (PNSV), Tomato chlorotic spot virus 
(TCSV), Tomato necrotic ring virus (TNRV)
Groundnut bud necrosis virus (GBNV), *Impatiens necrotic spot virus (INSV)

ssRNA + CABI, 2020; Nagata 
y de Ávila, 2000; 
Suganyadevi et 
al., 2018; Zuñiga-
Romano et al., 2019; 
Honguin-Peña et al., 
2007

Betaflexiviridae: Carlavirus 
Cowpea mild mottle virus (CPMMV)

Lineal / 
ssRNA +

EPPO, 2023

Alphaflexiviridae: Potexvirus
*Pepino mosaic virus (PepMV), Potato virus X (PVX)

Lineal / ssRNA 
+

EPPO, 2023; Zuñiga-
Romano et al., 2019

Tymoviridae: Tymovirus 
Eggplant mosaic virus (EMV)

Lineal / ssRNA 
+

EPPO, 2023

Secoviridae: Fabavirus
Broad bean wilt virus (BBWV)

Bipartita lineal / 
ssRNA +

CABI, 2020

Bromoviridae: Alfamovirus
*Alfalfa mosaic virus (AMV)

Tripartita lineal 
/ ssRNA

De la Torre-Almaráz 
et al., 2003

Bromoviridae: Cucumovirus 
*Cucumber mosaic virus (CMV), Peanut stunt virus (PSV), Tomato aspermy 
virus (TAV)

Tripartita lineal 
/ ssRNA +

EPPO, 2023; Lecoq 
y Desbiez, 2012; 
Zuñiga-Romano et 
al., 2019

Bromoviridae: Ilarvirus
Tobacco streak virus (TSV), Parietaria mottle virus (PMoV)

Tripartita lineal 
/ ssRNA +

CABI, 2020

Geminiviridae: Curtovirus
Beet curly top virus (BCTV)

Monopartita 
circular / 
ssDNA 

Chen y Gilbertson, 
2016 

*Viruses reported in Mexico.

Family / Genus / Species Type 
genome Reference 

Table 1. Continue...
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Cucumovirus exhibit a higher number of species following the Begomovirus genus. 
In some instances, viruses are transmitted by insect vectors (Figure 2); for instance, 
Potyviruses are transmitted by aphids, Orthotospoviruses by thrips (Aphidinae) 
(Gibbs et al., 2008; Sastry, 2013b), and Begomoviruses by whiteflies (Bemisia 
tabaci, Trialeurodes vaporariorum) (Hogenhout et al., 2008). This vector-mediated 
transmission adds complexity to the management of these phytopathogens.

Typically, symptoms induced by viruses are challenging to identify due to their 
occurrence in mixed viral infections (Sastry, 2013a). It is evident that these symp-
toms diminish the vigor, quality, and yield of crops (Figure 3) (Sastry, 2013b). 

Figure 2. Main forms of transmission of viruses and viroids in tomato. A) Transmission by seed; B) Mechanical 
transmission, due to the use of work tools, manipulation of plants; C) Transmission by insect vectors.
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Figure 3. Symptoms associated with viruses and viroids in tomatoes. A and B) Mosaic, leaf reduction, and mild to severe leaf dis-Symptoms associated with viruses and viroids in tomatoes. A and B) Mosaic, leaf reduction, and mild to severe leaf dis-
tortion associated with Tomato brown rugose fruit virus; C and D) Stunting, fruit deformation, and purple discoloration in 
leaves caused by Mexican papita viroid; E) Yellow mosaic symptom associated with Pepino mosaic virus; F) Symptoms 
of stunting, deformation, and severe mosaic associated with Begomovirus; G and H) Symptoms of concentric rings and 
slight fruit deformation associated with Tomato spotted wilt virus; I) Mosaic in leaves caused by Tobacco mosaic virus.
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Diseases caused by these phytopathogens pose a significant challenge to agricul-
ture. Moreover, imminent climate change and agricultural practices have favored 
outbreaks of diseases, leading to their spread to unreported or previously unaffected 
areas (Jones and Naidu, 2019). 

Viroids in tomato
Viroids are infectious agents with lower structural and genetic complexity, 

consisting of a covalently closed circular RNA strand of low molecular weight 
(246 to 401 nucleotides in length) (Flores et al., 1998). Some are pathogenic, 
while others replicate without inducing symptoms in the host (Flores et al., 1998). 
Most viroids were initially discovered due to the damage they caused in various 
economically important crops (Flores and Randles, 2003).

The International Committee on Taxonomy of Viruses (ICTV) has classified 33 
viroids into two families based on the cellular location of replication: Pospiviroidae 
(28 species) and Avsunviroidae (five species) (Di Serio and Flores, 2008). Each 
family consists of genera, and these genera comprise species with numerous 
sequence variants known as strains (Flores et al., 1998; 2000). Upon entering the 
host cell, Pospiviroidae move to the nucleus before initiating replication, whereas 
Avsunsoviroidae replicate in the chloroplasts (Sastry, 2013b). 

Since 1988, diseases naturally infected by viroids have been detected in several 
countries; all of the family Pospiviroidae, such as Tomato planta macho viroid 
(TPMVd) (Galindo et al., 1982), Mexican papita viroid (MPVd) which could be 
considered as a variant of the TPMVd (Verhoeven et al., 2011), Potato spindle 
tuber viroid  (PSTVd) (Puchta et al., 1990), Tomato apical stunt viroid  (TASVd) 
(Walter et al., 1980; Walter, 1987), Citrus exocortis viroid (CEVd) (Mishra et al., 
1991; Fagoaga y Duran-Vila, 1996; Verhoeven et al., 2004), Indian tomato bunchy 
top viroid  (Mishra et al., 1991) which is considered a CEVd strain (Singh et al., 
2003), Tomato chlorotic dwarf viroid (TCDVd) (Singh et al., 1999), and Columnea 
latent viroid (CLVd) (Verhoeven et al., 2004). In artificial infections, the tomato 
was successfully infected with Chrysanthemum stunt viroid (CSVd) (Matsushita 
y Kumar, 2009) and Pepper chat fruit viroid (PCFVd) (Table 2) (Verhoeven et al., 
2009). 

All viroids are transmitted through mechanical inoculation (Sastry, 2013b) and 
by contact (Figure 2); for instance, through tools used in pruning, via clothing, 
through crop manipulation, and direct contact between nearby plants (Hammond, 
2017). In other cases, transmission occurs through seeds, vegetative propagation, 
grafting, pollen, and insects (Figure 2) (Verhoeven et al., 2004). The efficiency of 
viroids in being transmitted through seeds varies among plant and viroid species 
(Flores et al., 2011; Singh et al., 2003; Chung and Choi, 2008). Viroid infections 
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Table 2. Viroids that affect tomato (Solanum lycopersicum) in the world.

Species Found  Symptoms 
in tomato*

Type of 
transmission

Losses and 
incidence Reference

Tomato 
planta 
macho viroid 
= Mexican 
papita viroid
(TPMVd= 
MPVd)

México (1982, 
2008 and 2020)

Canada (2008)

Stunting; chlorosis in 
the apex, tan or purple 
leaves, epinasty and 
severe deformation, 
reduction in the size and 
number of fruits and 
abortion of flowers. 

Probable vector 
Myzus persicae 

Seed by 
contaminated 
pollen

Causes 
significant 
losses in yield. 
Incidences of 
5% on the crop.

Galindo et al., 1982, 
1986; Ling y Zhang, 
2009; Mejorada-Cuellar, 
2020; Ling y Bledsoe, 
2009; Yanagisawa 
y Matsushita, 2017; 
Yanagisawa and 
Matsushita, 2018; 
Aviña-Padilla et al., 
2018; Matthews-Berry, 
2010; Li y Ling, 2012

 Potato 
spindle tuber 
viroid  
(PSTVd)

Discovered in 
1922 distributed 
worldwide but 
erradicated in 
most countries.
Australia (2011) 

Epinasty, chlorosis, 
violet color with 
bright yellow central 
nervation, deformation 
and reduction in size, 
brittle, and necrotic 
central nervation, short 
internodes, with stunted 
shoots and necrosis, 
abortion of flowers, 
small and hard fruits 
with dark green spots 
and irregular maturing  

Seed 

Vector M. 
persicae
(Transcap-
sidación with 
Potato leaf 
roll virus)

Reduction of 
crop biomass 
and yield by up 
to 89%. 

Incidence of 3% 
in cherry tomato 
(S. lycopersicum 
cv. Perino).

Owens, 2007; 
Matthews-Berry, 2010; 
van Brunschot et al., 
2014; Yanagisawa 
y Matsushita, 2017; 
Matsushita et al., 2011; 
Diener, 1987; Singh 
et al., 2003 NSW 
Government, 2012; 
Mackie et al., 2019

Tomato 
apical stunt 
viroid
(TASVd)

Israel (1999 y 
2000), 

Some countries 
in Asia and 
Africa, several 
European 
countries. 

Short internodes; 
deformed, brittle 
leaves with yellowing; 
reduction and 
colorlessness in fruits 
(pale reddish) 

Incidence of 
almost 100% 

Antignus et al., 2002, 
2007; CABI, 2018; 
Matsuura et al., 2010; 
Nielsen et al., 2012

Citrus 
exocortis 
viroid 
(CEVd)

Distributed 
worldwide, 
mainly in citrus 
fruits

Chlorosis, tanning and 
distortion, reduction in 
growth.

Found in 
commercial 
seed lots  

No reports Mishra et al. 1991; 
Matthews-Berry, 2010; 
Verhoeven et al., 2004 
Constable et al., 2019

Tomato 
chlorotic 
dwarf viroid
(TCDVd)

Canada, U.S.A., 
Mexico, Japan, 
Hawaii (2017)

Reduction in growth and 
yellowing (chlorosis) 
of shoots, deformation 
of fruits, chlorosis turns 
bronze-colored, reddish 
and /or purple, epinasty
Death of plants.

By active 
pollination by 
bumblebees 
(Bombus 
terrestris and 
B. ignites) 

100% incidence 
in greenhouses

Matsushita et al., 2008; 
Singh et al., 1999; 
Ling y Zhang, 2009; 
Verhoeven et al., 2004 y 
2007; Singh y Teixeria, 
2006; Olmedo-Velarde 
et al., 2018; Nie, 2012; 
Matthews-Berry, 2010; 
Antignus et al., 2007; 
Matsuura et al., 2010; 
Singh y Dilworth, 2009
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in commercial tomato crops have been linked to the importation of seeds and 
ornamental plants (Batuman and Gilbertson, 2013; Van Brunschot et al., 2014; 
Verhoeven et al., 2012). Due to the diversity of viroid species, including some 
endemic ones, and the presence of mixed infections in tomatoes, Mexico represents 
a center of origin for viroids (Aviña-Padilla et al., 2022).

Symptoms induced by viroids in tomatoes depend on the viroid species, cultivar, 
temperature, and light conditions. Plant responses are additionally influenced by 
RNA silencing, which plays a significant role in symptom development, combined 
with structural elements of viroids (Di Serio et al., 2013; Flores et al., 2015). The 
variability in symptoms is caused by different forms of gene expression. Moreover, 
viroid infections may or may not induce symptoms, but they generally lead to 
chlorosis, bronzing, leaf distortion, stunting, vein clearing, and discoloration, as 
well as malformation of flowers and fruits, reduced yield, and non-commercial fruit 
(Figure 1 C and D) (Singh et al., 2003; Kovalskaya and Hammond, 2014).

Management of diseases caused by viruses and viroids
There is a global trend towards the consumption of pesticide-free products. 

Regardless of the agricultural system and phytopathogen, it is ideal to adopt an 
Integrated Pest Management (IPM) approach that includes measures before, 
during, and after crop growth. As a first step, the use of virus-resistant cultivars 
is recommended (Rojas et al., 2018), along with cultural sanitation practices as 
disease management measures (Karthika et al., 2020).

The effective control of viruses and viroids involves early detection (diagnosis), 
eradication, and cultural control methods (Kovalskaya and Hammond, 2014). 

Columnea 
latent viroid 
(CLVd)

Netherlands and 
Belgium 

In 2007 in Great 
Britain and 
France and in 
2011 in Mali.

Severe deformation, 
tanning and burning 
of leaves, epinasty, 
chlorosis and necrosis 
in nervation, reduction 
in size or delay in 
development.

Found in 
commercial 
seed lots  

Decline in 
production in 
Great Britain. 
Incidence 
on field of 
approximately 
1.5%.

Nixon et al., 2010; 
Batuman y Gilbertson, 
2013; Matthews-Berry, 
2010; Steyer et al., 
2010; Constable et al., 
2019.

Pepper chat 
fruit viroid
(PCFVd)

In 2009 in bell 
pepper plants and 
in 2013 in tomato 
seed shipments

Necrosis in young 
leaves and necrosis in 
nervation and petioles, 
stunting, reduction in 
fruit size.

Found in 
commercial 
seed lots 

No reports Verhoeven et al.,2009; 
Chambers et al., 2013; 
Constable et al.,2019

zThe described symptoms that each viroid can cause can be expressed together or separately in an infected plant. 

Especie Found Symptoms 
in tomato*

Type of 
transmission

Losses and 
incidence Reference

Table 2. Continue...
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Implementing appropriate control measures will help prevent or reduce the severity 
of viruses and/or viroids in plants. Therefore, diagnosis for virus identification 
is crucial for implementing management strategies. Diagnostic techniques may 
include ELISA, immunochromatography or strip tests, nucleic acid hybridization, 
polymerase chain reaction (PCR), and next-generation sequencers (González-
Garza, 2017).

Given the significance of viral and viroidal diseases, alternative approaches 
have been sought, such as the use of beneficial microorganisms to protect the crop 
and enhance plant growth and productivity (Sofy et al., 2019). 

As mentioned earlier, the use of tolerant varieties has been implemented as part 
of the management virus and/or viroidal variety; however, in recent years, there 
has been a growing emphasis on issues related to the induction of natural defenses 
in plants (Ryals et al., 1994; Kloepper et al., 2004). The demand for biological 
products for pest and disease control, along with the use of inducing molecules 
(elicitors) capable of triggering defense responses in plants, is on the rise (Nasir et 
al., 2014). It should be noted that the magnitude and effectiveness of the induced 
response will depend on the type of molecule, the signal, or its ability to induce 
secondary signaling within the tissue (Eder and Cosio, 1994).

By nature, plants possess the ability to defend themselves against phytopathogens 
through the production of substances that prevent or reduce damage caused by 
microorganisms. This response is triggered by plant-pathogen recognition after a 
local infection, where plants activate defense responses systemically to increase 
the magnitude and speed of the response against the pathogen (Delgado-Oramas, 
2020). Induced resistance is a state where plants enhance their defenses against 
phytopathogen attacks and are triggered by the stimulation of chemical and/or 
biological inducers (Choudhary et al., 2007). In general, induced resistance can 
function for the control of a broad spectrum of phytopathogens (Kloepper, 1993). 
Two types of pathogen-induced resistance are known in plants: Induced Systemic 
Resistance (ISR) and Systemic Acquired Resistance (SAR) (Camarena-Gutiérrez 
and Torre-Almaráz, 2007). 

Induced Systemic Resistance (ISR). The activation of ISR requires the signaling 
of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) (Beneduzi et al., 
2012; Pieterse et al., 2014). These products coordinately transduce extracellular 
stimuli recognized by host cell receptors into a large number of target molecules 
that integrate specific intracellular responses to external stimuli (Walters, 2009; 
Delgado-Oramas, 2020; Jankiewicz and Koltonowicz, 2012; Choi et al., 2014). 
ISR has been observed in various plant species as part of defense reactions against 
fungi, bacteria, and viruses (Camarena-Gutiérrez and de la Torre-Almaráz, 2007).
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Signaling pathways mediated by ET, AJ, AS and their interaction. The 
signaling pathways mediated by SA, JA, and ET do not operate independently 
(Maldonado-Cruz et al., 2008; Derksen et al., 2013). Through a cascade of signals 
from mitogen-activated protein kinases (MAPKs), the activation of ethylene-
insensitive genes 1, 2, and 3 (EIN1, EIN2, and EIN3) occurs, regulating gene 
expression in response to pathogens and injuries (Zhu et al., 2011). In a study on 
mustard (Sinapis alba), it was demonstrated that ethylene, in interaction with the 
mitochondrial alternative oxidase pathway (AOX), induces systemic resistance to 
Turnip mosaic virus (TuMV). This is attributed to the potential limitation of the 
virus’s systemic infection and its accumulation in the plant (Zhu et al., 2011).

Jasmonate signaling plays a crucial role in the induction of defense genes in plants 
against pests (Garnica et al., 2012). The gene for coronatine-insensitive protein 
(COI1) serves as a central regulator in the JA signaling pathway. Upon binding with 
Jasmonoyl-Isoleucine (JA-Ile), it facilitates the release of the transcription factor 
MYC2, leading to the transcription of genes responsive to jasmonates (Garnica et 
al., 2012). Evidence suggests that the expression of the COI1 gene and the N gene 
in the tobacco-TMV interaction imparts resistance to TMV (Liu et al., 2004).

Salicylic acid (SA) is a pivotal signaling molecule in intracellular signal trans-
duction. In addition to contributing to the release of H2O2 and its active oxygen 
derivatives, it can induce the expression of genes related to defense (Shirasu et al., 
1997).  

Induced Systemic Response in tomato against phytopathogenic viruses 
mediated by PGPR. The need to ensure crop quality and high yields with low 
environmental impact has led to the emergence of different inputs formulated with 
microorganisms, among which the use of Plant Growth-Promoting Rhizobacteria 
(PGPR) can be highlighted (González et al., 2018; Canchignia et al., 2015). These 
microorganisms enhance Systemic Resistance Induction (SRI) and are saprophytic 
bacteria that live freely in the rhizosphere. By colonizing the plant root system, they 
contribute through secretions, vitamins, hormones, and other growth factors that 
help improve plant growth and productivity (Walters, 2009). What is interesting is 
their use of the CVRs on foliage and seeds, observing different benefits (Table 3, 
Figure 4).

Most bacteria reported as Plant Growth-Promoting Rhizobacteria (PGPR) 
belong to the genera Pseudomonas and Bacillus. Additionally, bacteria from the 
following genera have been reported: Aeromonas, Agrobacterium, Arthrobacter, 
Alcaligenes, Azospirillum, Azoarcus, Azotobacter, Burkholderia, Bradyrhizobium, 
Comamonas, Cyanobacteria, Enterobacter, Gluconacetobacter, Pizobielonas, 
Serratia, Variovorax, Streptomyces, and Xanthomonas (Vessey, 2003). 
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Table 3. Plant growth-promoting rhizobacteria species used for virus management in tomato.

Viruses PGPR Result obtained Reference

Cucumber 
mosaic virus 
(CMV)

Pseudomonas fluorescens, 
Serratia marcescens

Bacillus amyloliquefaciens (IN937a), B. 
subtilus (IN937b), B. pumilus (SE34)

B. pumilus (SE34), B. 
amyloliquefaciens (IN937a), B. 
subtilus (IN937b), B. pumilus (INR7, T4)

Azospirillum lipoferum (MRB16), A. 
brasilienses (SP7), A. 
brasilienses (N040), Anabena oryzae 

P. aeruginosa, Stenotrophomonas rhizophilia

Reduction in the area under the 
disease progress curve in diseased 
plants treated.

Symptom reduction from 38% to 
58% with PGPR, compared with 
88% to 98% without PGPR. 

Infection rate from 27.5 (SE34) to 
85% (T4), compared with control 
(87.5%). It favored the growth of 
plants and protected them against 
the virus.

Infected and treated plants 
increased their greenhouse yield to 
48% and field yield to 40%.

Promoted vegetative growth and 
yield. Prevented infection in 91% 
of plants.

Raupach et 
al., 1996

Zehnder et 
al., 2000, 2001

Murphy et al., 2003

Dashti et al., 2007

Dashti et al., 2012

Tobacco mosaic 
virus (TMV)

Pseudomonas spp. (B-25)

Bacillus spp.

Promoted plant growth and yield. 
Reduced the incidence of the 
virus in plants. 

Favored the development of roots 
in infected tobacco plants.

Kirankumar et 
al., 2008

Wang et al., 2009; 
Choi et al., 2014

Bacillus amyloliquefaciens (TBorg1) 90 % reduction in virus 
buildup. Increased total soluble 
carbohydrates, proteins and 
ascorbic acid.

Abdelkhalek et al., 
2022

P. fluorescens SM90 y B. subtilis DR06 Increased defense-related genes 
NPR1, COI1 AND PR1-a, 
promotes growth in plants infected 
with the virus.

Sharaf et al., 2023

Tomato chlorotic 
spot virus
(TCSV)

B. amyloliquefaciens (IN937a)
B. pumilus (SE34) + B. 
amyloliquefaciens (IN937a)
B. pumilus (SE34) + B. 
sphaericus (SE56) + B. 
amyloliquefaciens (IN937a)

It reduced severity in the field 
and was the treatment that best 
controlled the disease.

Abdalla et al., 2017

Tomato mottle 
virus
(ToMoV)

B. amyloliquefaciens (IN 937a)
B. subtilis (IN 937b)
B. pumilus (SE34)

Reduced the incidence of the 
virus in plants by 30%.

Reduced the development of 
symptoms and incidence.

Murphy et 
al., 2000; Zehnder 
et al., 2001
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Tomato spotted 
wilt virus
(TSWV)

P. fluorescens (CHA0)
P. fluorescens (CHA0 + CoT-1)
P. fluorescens (CHA0 + CoT-1 + CoP-1)

B. amyloliquefaciens (MBI600)

Increased yield and growth 
of infected and treated plants. 
Reduced the viral load.

Reduced the incidence of the 
virus by 80%.

Kandan et 
al. 2005; 2002

Beris et al., 2018

Tomato yellow 
leaf curl 
virus (TYLCV)

Enterobacter asburiae (BQ9) Reduced the severity in treated 
and infected plants by 52%.

Li et al., 2016

Potato virus Y Bacillus amyloliquefaciens (strain MBI600) Reduced the systemic 
accumulation of viruses.

Beris et al., 2018

Groundnut bud 
necrosis virus 
(GBNV)

Bacillus amyloliquefaciens (VB7) Reduced symptoms by around 
84%.

Vanthana et al., 
2019

Viruses PGPR Result obtained Reference

Table 3. Continue...

Figura 4. Forms of application and mechanisms of action of Plant Growth-Promoting Rhizobacteria (PGPR) used to protect 
tomatoes from viral infections.
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There are studies on the use of PGPR employed as microbial inoculants to pro-
tect tomato plants against viral infections, where, additionally, an increase in crop 
yield was recorded (Table 3). For instance, in Mexico, Samaniego et al. (2017) 
and Hernández-Santiago et al. (2020) reported that the application of Bacillus to 
infected tomato plants not only led to an increase in plant height and weight but 
also induced systemic resistance. In recent years, research on Systemic Resistance 
Induction (SRI) using PGPR against economically relevant viruses (20 viruses) in 
various crops has gained significance (Sofy et al., 2019). However, despite ef-
forts to counteract viruses, research remains scarce, particularly in the case of vi-
roids. The work has mainly focused on crops such as Musa spp., Vigna unguiculata, 
V. mungo, Vicia faba, Momordica charantia, Cucumis sativus, Citrullus lanatus, 
Solanum lycopersicum, S. tuberosum, Capsicum annuum, Nicotiana tabacum, N. 
tabacum cv. Xanthi-nc, Arabidopsis thaliana, Chenopodium quinoa, Helianthus 
annuus, Phaseolus vulgaris, Datura metel, and Cucurbita maxima (Sofy et al., 
2019).

There are other microorganisms, such as endophytic fungi (Trichoderma spp.), 
which are also resistance inducers in plants, and they are even sold as biocontrollers 
of phytopathogenic fungi by companies in Mexico, to be applied to various crops. 
However, the use of these microorganisms and their effect on infected plants by 
viruses and viroids has been shallowly studied. Nevertheless, some species of 
rhizosphere and endophytic fungi seem to have a favorable effect as plant growth 
promoters in virus-infected tomato plants (Ramos-Villanueva et al., 2023).

Conclusions

Diseases caused by viruses and viroids impact the yield and quality of tomatoes, 
as well as other economically significant crops worldwide. In Mexico, there are 
records of over 28 viruses, mostly belonging to the Begomovirus genus. However, 
research on Plant Growth-Promoting Rhizobacteria (PGPR) in tomatoes as inducers 
of resistance against these pathogens or to enhance crop health is limited. The use 
of B. subtilis has been reported for controlling Tobacco mosaic virus in tomatoes 
(Samaniego et al., 2017; Hernández-Santiago et al., 2020). Globally, PGPR such 
as Pseudomonas, Serratia, Bacillus, Azospirillum, Anabena, Enterobacter, and 
Stenotropomona have been evaluated against nine virus species in tomatoes, with 
a focus on Cucumber mosaic virus. Nevertheless, it is essential to strengthen such 
research due to the significance of tomato cultivation in Mexico. Promisingly, 
PGPR has demonstrated effects in reducing incidence and severity by up to 80%. 
Additionally, a yield increase of up to 48% has been recorded compared to plants 
without PGPR application. Therefore, the use of growth promoting microorganisms 
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are a promising alternative for integration into an integrated management of 
viral infections, given its compatibility with the environment and experimentally 
effective for the control of a variety of viruses. 
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